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EMPIRICAL BAYES RULES FOR SELECTING
THE BEST BINOMIAL POPULATION*

Shanti S. Gupta and TaChen Liang
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Abstract

Consider k populations ri, i = l,...,k, where an observation

from 7r. has binomial distribution with parameters N and p, (unknown).

Let P[k] = max pj. A population ri with pi = P[k] is called a best
l<j< k 1

population. We are interested in selecting the best population. Let

p = (Pl...Pk) and let i denote the index of the selected population.

Under the loss function £( ,i) = p[k]-Pi' this statistical selection

problem is studied via empirical Bayes approach.

Some selection rules based on monotone empirical Bayes estimators

of the binomial parameters are proposed. First, it is shown that,

under the squared error loss, the Bayes risks of the proposed monotone

empirical Bayes estimators converge to the related minimum Bayes

risks with rates of convergence at least of order 0(nl), where n is

the number of accumulated past experiences at hand. Further, for

the selection problem, the rates of convergence of the proposed

selection rules are shown to be at least of order 0(exp(-cn)) for
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EMPIRICAL BAYES RULES FOR SELECTING
THE BEST BINOMIAL POPULATION

1. Introduction

In many situations, an experimenter is often confronted with

choosing a model which is the best in some sense among those under

study. For example, consider k different competing drugs for a certain

ailment. We would like to select the best among them in the

sense that it has the highest probability of success (cure of

the ailment). This kind of binomial model occurs in many fields,

such as medicine, engineering, and sociology. The problem of

selecting a binomial model associated with the largest probability

of success was first considered by Sobel and Huyett (1957) and

Gupta and Sobel (1960). The former used the indifference zone

formulation and the latter studied the subset selection approach;

see Gupta and Huang (1976) and Gupta, Huang and Huang (1976), and

Gupta and McDonald (1986) for further variations in goals and

procedures for this problem.

Now, consider a situation in which one will be repeatedly

dealing with the same selection problem independently. This will

be the case with an on-going testing with drugs, for example.

In such instances, it is reasonable to formulate the component

problem in the sequence as a Bayes decision problem with respect

to an unknown prior distribution on the parameter space, and then,

use the accumulated observations to improve the decision rule at each

/ I4 / r0
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stage. This is the empirical Bayes approach of Robbins (see

Robbins (1956 , 1964 and 1983)). Many such empirical Bayes rules

have been shown to be asymptotically optimal in the sense that

the risk for the nth decision problem converges to the minimum

Bayes risk which would have been obtained if the prior

distribution was known and the Bayes rule with respect to this

prior distribution was used.

Etpirical Bayes rules have been derived for subset selection

goals by Deely (1965). Recently, Gupta and Hsiao (1983)

and Gupta and Leu (1983) have studied empirical Bayes rules for

selecting good populations with respect to a standard or a

control,with the underlying distributions being uniformly

distribited. Gupta and Liang (1984) studied empirical Bayes

rules for selecting binomial populations better than a standard

or a control.

Tn this paper, we obtain empirical Bayes procedures for

selecting the best among k different binomial populations.

These rules are based on monotone empirical Bayes estimators

of the binomial success probabilities. First, it is shown

that, under the squared error loss, the Bayes risks of the

,ropo5eod monotone empirical Bayes estimators converge to the

relited minimum Bayes risks with rates of convergence at least

of, order 0(n- ). Further, for the selection problem, the rates

of w, v .q flce of thu proposed selection rules are shown to

67
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be at least of order O(exp(-cn)) for some c > 0.

2. Formulatioi~ ;-*f the Empirical Baves Aporoach

Consider I: b-noinial populations iri ± = 1, . ,k, each

consisting of N trials. For each i, ± = 1,...,k, let pi be the

probability cf success for each trial in u,, and let X.i denote the

number of successes among the associated N trials. Then, X~ip 1

is binomnially distributed with probability function f (xI
X. N-X. k

[Ni) P 1 l-P ) , a 0 1 . . N Let f=~) I f.i(x. jp.

where x 1' ) and (pl .. p For each L3, let

PEI : .. : PIk 3 be the ordered parameters of p1 0.. Pk It is

assumed that the exact matching between the ordered and the

unordered parameters is unknown. Any population u with

p= P~k is considered as the beat population. Our goal is to

derive empirical Bayes rules to select the best population.

Let nl = (1 = (Pl1'"'Pk)' pi E (0,1), i = l...,k) be the

k
parameter space and Gp) = 1 G(pi) be the prior distribution

i=i

over fl. Let A = (iii z 1,.. .,k) be the action space. When

action i is taken, it means that population u i is selected as the

best population. For the parameter L) and action i, the loss

function 9(p,i) is defined as:

(2.1) "E",) a PE -Pi

the difference between the best and the selected population.



k
Let X = IT {0,1,...,N) be the sample space. t. sel.7cticn

I=I

rule d d...,dk is a mapoing- from X to [0, 1 k :zuch that for

each observation x = (xl...,xk), the function d(x)

(d (x),.... d (x)) satisfies that 0 < d (x) s 1, i = 1.... ,I:, and

k
E d i(x) 1. Note that d i(x), i = 1 .... k, is

* i=l

the prctability of selecting population a as the best population

when x is observed.

k
Let 2 = (did : -4 [0, 11, being measurable) be th_ set of

all selection rules. For each d E 2, let r(G,d) denote the

associat-d Eaves risk. Then, r(G) = inf r(G,d) S th- iLnirum
dr=M

Bayes risk.

From (2.1), the Bayes risk associated with selection rule d

is:

rCG,d) f (Q2,d(x))fCXI2 )dG(2)

(2.2) k
- C - [ di(x)? (x)lf ::)'~

XEX

kW (X)
where f(W) = IT fi (x ), (X) = (x

fi(X) f fi(xlp)dGi(P), Wi (x) f Pfi(x] rfi(P)

0 0

C : f p k]dG(Cex)f(x), being a constant,

and G(QIx) is the posterior distribution of given %.

A. .-. ." " " . - . " . . " ... ,.". .".
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For each L 6 c, let

(2.3) A(x) = (iji(x )  max r (x )}.l. J~sk

Thus, a randomized Bayes rule is

dr = (dis,...,dkG), where

-1r A(x)I , if i EAx)
(2.4) di (x) -.

iG 10 otherwise;

and IAI denotes the size of the set A.

When the prior distribution G is unknown, it is impossibl-

to apply the Bayes rules. In this case, we use the

empirical Bayes approach. Note

that, lor each i, fi(x is the posterior mean of the binomial

probability pi given that X, = x i is observed. Due to the

surprising quirk that fi (xi) can not be consistently estimat-d in

the usual empirical Bayes sense (see Robbins (1964), Samuel

(1963) and Vardeman (1978)), we use below an idea of Robbins in

setting up the empirical Bayes framework for our selection problem.

For each i, i = 1,...,k, at stage j, consider N+1 trial3

from if Let X j and Yij, respectively, stand for the number of

successes in the first N trials and the last trial. Let PiJ

stand for the probability of success for each of the N+1 trials.

P ij has distribution G . Conditional on PiJ = Pij'

X ilpij N, B(NIp'j)P YIp 1 j - 8 i"Jj)i and andijPij
are independent. Let Zj . ((X j, Yij),... ,  kjykj) denote the

observations at the Jth stage, j - 1,...,n. We also let X --

S(XI ... ,X) denote the present observations.

k"*~

m .
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Consider an empirical ?ayes selection rule dn(X;

Z ) (d X; Z I ... ), ... ,dkn X; Z ,..., Z )). LetIn -; - ' -ra kn~x -1' Z

r(G,d n ) be the Bayes risk associated with the selection rule

d n x; ZI, ... , n). Then,

(,2. 5) ) ~ (p d)f x 2 d ~ )
n n n

where the expectation is tak-en with respect to (ZI,...,Zn). For

simplicity, d (x; Z 1 ,...,Z) will be denoted by d (x).
n dn x- n

Definition 2.1. A sequence of selection rules (d ) is said to
n n=l

be asymptotically optimal relative to the prior distribution G if

r(G,d ) -. r(G) as n - .
n

From (2.4), a natural empirical Bayes selection rule can be

defined as follows:

Fsr each i = 1,...,k, and n = 1,2,..., let P, (x) ( X (
in in

(X , Yi ),...,(X Y be an estimator of P (x). Let A (x)

( i '-)= max Y (x )}, and define d (x) = (dI  (x)

d (X)) I'here
kn

A (x) , if i E A (x);
(2.6) din(x) = n

in otherwise.

P

If Y (x) - Pi(x) for all x 0,1,...,N and i

(whnr+ " P" means convergence in probability), then, by the

boundedness of the loss function e(2,i) and Corollary 2 of

Robbii-, t1964), it follows that r(G,d ) -4 r(G) as n - . Thus, then

sequeric- cf selection rules (d n defined in (2.6) is• n n1l

asymptctically optimal. Hence, our task is only to

6

I.. . . ,,, " " - • ", . V " "-, , - .,.- -.- ." ..- .' "- '" ". .. -,- ",
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find the sequence of estimators (fin (x)) possessing the abcve

mentioned convergence property.

3. The Proposed Empirical Bayes Selection Rules

Before we go further to construct empirical Bayes estimators

fin (x)), we first investigate some property related to the Bayes

rule dG defined in (2.4).

Definition 3.1. A selection rule d = (d1,..., d k ) is said to be

monotone if for each i = 1,...,k, d i(x) is increasing in xi while

all other variables x are fixed, and decreasing in x for each

j * i while all other variables are fixed.

Note that f (x) is the Bayes estimator of the binomial

parameter p under the squared error loss given that Xi = x isii

observed. It is also easy to see that P i(x) is increasing in x

for x =

Definition 3.2. An estimator ?(.) is called a monotone estimator

if ?(x) is an increasing function of x.

By the monotone property of the Bayes estimators Pi(X×,

i = ,.. .,k, one can see that the Bayes selection rule dG is a

monotone selection rule.

Under the squared error loss, the problem of estimating the

binomial parameter pi is a monotone estimation problem. By

Theorem 8.7 of Berger (1980), for a monotone estimation problem,

the class of monotone decision rules form an essentially complete

class. With this consideration, it is reasonable to require that

the concerned estimators (?in(X)) possess the above

monotone property.
C.

. . . .. . . . . . . . . . . . . . . . . . . . . . .
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In the literature, Robbins (1956) and Vardeman (IE,7B), , ..

oDthers, proposed some estimators for fi (.). Those estimators

are consistent in that they converqe to p.(x) in

probability. However, they do not possess the monotone oro'-7r:t.

We now propose some monotone estimators.

Fcr each 1 1,....k, n = 1,2,..., and 0,1,.. .,N, .. ....e

n
xlj -i( i 1I (X +

3.1 in(X n--(x.

J=1

n

( .-2) W (x) (X Y I ) + n I
in n ij (x} ij

j=1

where I (.) denotes the indicator function of the set A. A:.o,
A

let V i= Xij + Y for each i = 1,...,k and j = 1,2,...

Def inl?

n n
(3.3) Win (x )  xn(+1)~ Ilx (Vii)]Al I x(Xij n

j=1 1=1

wher - A b min {ab}. Let

2.4 fi (x )  W Wi (x)/fi (x);
?in in i

(2.5) in (x) Win (X)/fin (x);

ind, !or each 0 < x :< N, define

t

r .P in (x)= max min { P (y)/(t-s81)};
in5sx sst<N

y=s

t

(7(x) max min
in 0<s!x m<t<N :in(Y)/(t-s+}

y=S
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Note that by (3.6) and (3.7), both (in and (::) are
in i

increa3ing in x. We propose f* (m) (or 7in(x)) as an estimator of
in in

f (X). Let
i
(3.8) A * = () in i) = max *x );

n - in li~ < j: n

(3.9) A (x) = {ili (X ) = max f (x ) .n ~' ~ Ins 1SJSk Jn J

Two selection rules d (d n,...,d kn) and dn = (dn n..... ,dk

analogous to the Bayes selection rule d are proposed as follows:

For each i = 1,...,k, let

I* (X j-1 f A*( )

(3.10) d~ *Cx) n nAC) f±CA()
ino1 otherwise;

and

1 A n(X)l -  if 1 6 A n(x);

(3.11) d(x) =in 1
10 otherwise.

Due to the monotone property of the estimators Ifin

i= 1,...,k) and I xi); i = 1,...,k), one can see that
* .5*

d and d are both monotone selection rules.
n n

4. Asymptotic Optimality of the Monotone Estimators

In this section, we study the asymptotic optimality

property of the estimators f in (x) and fn (X). Under the squared

error loss, i (x) is the Bayes estimator of pi. The associated

Bayes risk is

(4.1) R.(G E[(P f i(Xi 2 1.

** % **l* * S
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Let i) be any estimator of pi with the associated Bayes

risk Ri(G i , 4,). Then,
1

(4.2) R (Gi, ri ) - Ri (G = E[(?i (X - iX i )) 2].

Let {Pi (x; .. i Y )) a i (x)) be a sequence
Lt{in(X (Xil, Yil). "' XinYin in

of empirical Bayes estimators based on (x; (Xi, Yil),...,

k in' Yin

Definition 4. 1. A sequence of empirical Bayes estimators

?i n is said to be asymptotically optimal at least of o derin n1l

a n relative to the prior Gi if Ri (Gi, fin) - Ri(Gi) <O( n ) Ds

n - where (a ) is a sequence of positive values satisfying
n

lim a = 0.
nn -

Theorem 4.1. Let *) and * ) be the sequences of epirical
in in

Bayes estimators defined in (3.6) and (3.7), respectively. Then,

(i ) - Ri(G i )  O(n
di in i i

and R (Gi ) - R (Gi ) < O(n).i in i i-

The following lemmas are useful in presenting a concise proof of

Theorrm 4. 1.

Lemma 4. 1. Let Z be a random variable and z be a real number

such that -- < a _< Z, z _s b _ o. Then, for any s > 0,

z-a b-z

EC IZ-zJB f st8-1P(Z-z <-t}dt + f stS-1 P{Z-z > t)dt,

0 0

-rovided that the expectation exists.

Proof: Straightforward computation.
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Lemma 4.2. For the estimators ? and *defined in (3.4) and
in in

(3.6), respectively, we have

a) ? (O)( )(),

ino): i( in Z~N "in(N"'

b) For 1 < x : 1-1,

C:n(X) > r (x) iff thereissomey<x
in in

such that fin (Y) > xin(X);

in x) < ?p (x) iff there is some y > x
in in

such that ?i (y) < i ( x).
in in

c) For 0 5 x _5 N,

x

( Cx - iCx) > t) P{?i(Y) - i(Y) > t};

y=O
N

P *X) - (x) < -t) S - •
in ini

y=x

Proof: Parts a) and b) are straightforward from

(3.6). Part c) is a result of parts a) and b) and an application

of Bcnferroni's inequality.

R_-mark 4.1. Lemma 4.2 is also true if ? and Iin are replaced
in in

by fin and in' respectively.

Lemma 4.3. For 0 < t < I-?i(x) and 0 - y : x,

2a) P{ in(Cy) - fiCy) > t} S exp{-2na (t,y,n,i)}; and

b) P(f (y) - ?i(Y) > t} 5 exp{- a (t, y, n,i)),

if t > b(n,y,i), where b(n,y,i) = (l-fi(y))n- /(fi (y)n- ) and

a1 (t,y,n,i) = tlfi(y) + n -n (1-i(y)).

For 0 < t < f (x) and x : y : N,

c) PPin (Y) - ?i(y) < -t) exp{-2na2(t,y,n,i)}; and

"i . -."- .'. -"-2" -/ 2" -."-" ; 2"- ""-in... - .. . -. . ..-..... .. -° " ... . .- ....,2."... .-' ...
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d) P{n (Y) - (ily) < -t) _< 2 exp{- a (t,y,n,i)), whe:._
in -1

a2 (t,y,n,i) = -t(fi(y) +n ) - n 1 - (y)).

Proof: Here we prove part a) only. Other parts follow by

a similar reasoninq.

For 0 < t < 1-fi (x) and 0 :5 y _5 x, by (3.1), (3.2), (3.4)

and the fact that f (y) = W i ( x ) / f i (x ) , following a straight-

forward computation, one can obtain

P(fin(Y) - i(y) > t}

P{Win(Y) - (fi(y) + t)f in(Y) > 0)

(4.3) n

PI{: L I{y}(Xij )UY1  - ,i(y) - t] +

j=l

tfi(y) > a (t,yn,i)}.

Note that I (Xij)[Y - f (y) - tJ, J = 1,2,...,n are i.i.d.,
{y) ij i

I -i (y) - t S I y(Xi )[Yij - ri(y) - t] :5 1 - - t for all

J, and EI (Xij)(Y - i y) - t]] = -tfi(y). Also,
{y) i ij i

a 1 (t,y,n,i) > 0 iff t > b(n,y,i). Hence, by (4.3) and Theorem 22I
of Hoeffding (1963), P(f (Y) - ? (y) > t) :5 exp(-2na 2(t,y,n,-)1

in 1 1

if t > b(n,y,i).

Remark 4.2. Lemma 4.3 is still true if the strict inequality

> ) is replaced by < ( >

L-nma 4.4. For 0 _5 y :5 x,

1-fi (x)I-
a) tP(Iin y) - ?iPy) > t~dt <_ 0(n 1); and

0

b) f tP{r inl Y) - i(y) > t}dt ( On-1)

0

I .: ._.;..:,.-, .. .. -... ..-.. '; ., .;. ; . ..... ., ,. ,. .,.. ... .. ... .... _.. .. ..... . .. ... .. .. .. ...... .: ,,. .... ..
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For x : y : N,

C) I tPI?inX) - ?i(y) < -t)dt O(n-); and

0

I' (x)

d) f tP{ in(Y) - ?i(y) < -t)dt < O(n-1)

0

Proof: We prove part a) only.

Case 1. As b(n,y,i) _ I - ?i(x), then

(X)q1-Pi(x)
tPl~in(Y) -i(y) > t~dtIin

0

b(n, y, i)

_f t dt

0

= b 2(n,y,i)/2

= On- 2,

Case 2. As b(n,y,i) < 1 - i (x), then, by Lemma 4.3.a) and a

direct computation,

1-f? (X)

I tP(? (Y) - (y) > tdt
in > d

0

b(n,y,i) 1- i(x)

S t dt tPiny) - i(y) t)dt

0 b(n,y,i)

: O(n - 2  O(n - 1

-i= D(n ),

"""" " "" " " " " '" "-" '"" " " " " '" " """" '" " "" " " " • '-' : i';:/" :':-:' ' :"/ ::':' ::: ' :'":=' :,": : 'p
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Proof of Theorem 4.1.

By (4.2),

0 < Ri(GiV'in) - Ri(G i)

(4.4) = *[ M -)n
(

in i= E[('P in (X) - v i(X))2IX =x~f i(X).

x=O

By Lemmas 4.1 - 4.3 and the fact that 0 5 1'in (X), Vi(x) -

1, one can obtain that

E tin(X) - (X)) i = x3

ini

IV )

(45tP 2(X) v n(X) < -t)dt

0

1-i(x)

(4.5) 2tP(' in(X) - i(x) > t)dt

0

N SIP (x)

SJ 2tP(fP in y) - ?1 i(y) < -tldt

y=x 0

x i-f (X)

+ J 2tP(?Pini (Y) - ?1 i(Y) > t)d*,.

y=O 0

Then, by Lemma 4.4, (4.4), (4.5) and the fact that N is a

finite number, therefore, R(Gi,Vi) - R(G) 0 0(n ).

The similar claim for * is established on the same lines.in

"6d " . . -. . . . - . - . . - - . .
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5. Asymptotic Optimality of the Selection Rules

Let (d )= be a sequence of empirical Bayes selection rules
n n=1

relative to the prior distribution 0. Since the Bayes rule d

achieves the minimum Bayes risk r(G), r(G,d ) - r(G) 0 for alln

n = 1,2..... Thus, the nonnegative difference r(G,d ) - r(G) isn

used as a measure of the optimality of the sequence of empirical

Bayes rules (d )n"
n n1l

Definition 5.1. The sequence of empirical Bayes rules (d )n is
n n=1

said to be asymptotically optimal at least of order P n relative

to the prior 0 if r(G,d n ) - r(G) 0(P n ) as n -4 w where (n ) is a

sequence of positive numbers such that lim Pn = 0.
n -- m

For each x E %, let A(x) be that defined in (2.3) and let

B(x) = {1,...,k} - A(x). Thus, for each x E % , xi) ? x > (xj)

for i E A(x) and j a B(x). Let a = min (?i(xi) - jx)I

i E A(x), J S B(x)l. Hence, a 1 0 since 7 is a finite space.

Then,

0 : r (G,d ) - r(G)n

(5.1) : P{ max (xi) S max 1n(x))

- jn(Xj:5 m x}i [-
iEA(x) iJ)B(x)

xC EAx JEB(x)

* . . . . 4
• ,- ,..*. - *-/.. 4',~ . *.;- . .'- .- - -,* .-** • . . .. 4 . -. -- -- 4-;. " . -..... .... . ;. ., , ,
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How, for each x a i, j Aix), j E B~x),

in i jn

* (X( (x)- X )]-(?P * x )-f (X (]< X )-?P (x
in ± i i jn iJ i i - i

(5.2)

:5 PU OP* X )-? (X' )-( Cx -a/2 + CO x )' (x a/2)
in i i.i in j .j .1

in (5.2), the first inequality is due to the definition of e.

Foi(-.23), it suffices to consider the asymptotic behavior of

the probabilities P{?* Cx )-'P (x & /2) and P(f* Cx )-?P Cx
in J J .1 in

-5 -E/2).

Let c min min (F f 2(y)/2). Then c1 > 0. From the
1:5i~k Q~sy5N

def initions of a and b~n,y,i), we see that, for

z ufficiently large n, &. > 2 max max (b~n,yi)). Therefore, ty

1:5i~k 05y 5N

Lemma 4.2 c) and remark 4.2, for n large enough,

< P(Cx() -'P (y)) > a/2)~in ii-
5. 

Y=

:5 exp(-2na 2CE/2,yn,i))

:5 O~expC-c In)).

The last step of (5.3) follows from the fact that

*exp{-2na 2(t,y,n,i)} < O(exp(-c n)) for all 0 < y < N and 1 < 1 <k,

which is established easily by a straightforward computation and

definitions of a I(E/2,y,n,i) and c.
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Similarly, one can prove that

Pltn (xi) - ri(xi) ( -&/2)

N

(5.4) :9 exp(-2na2 (/2,y,n,i))
1 2

Yzxi

5 O(exp(-c n)).

1

Therefore, from (5.1) to (5.4), and the finiteness of the

space Z, we have

0 : r(G,d*) - r(G) : O(exp(-c n)).n I

Similarly, for the sequence of empirical Bayes selection

rules i (t) we can prove that 0 < r(G,d ) - r(G) < O(exp(-c2 n))n n-l' 2

for some c2 > 0.

We now state these results as a theorem.

Theorem 5.1. Let (d:)n.t and (d) be the sequences ofn lnn~lbetesqees

empirical Bayes selection rules defined in (3.10) and (3.11),

respectively. Then,

rG, d)n - r(G) : O(exp(-c n)),
n1

and
-U

r(G,d n ) - r(G) : Olexp(-c2 n))

for some ci > 0, i = 1,2.

A- . . . . . . . . ... .
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